- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Johnson, Jeremy (1)
-
Lemkau, Karin L (1)
-
Olson, Michael Brady (1)
-
Parker, Ian W (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Seasonal upwelling in coastal environments supports high primary production by increasing concentrations of inorganic nutrients in the euphotic zone. Diatoms typically dominate planktonic primary production and community composition during seasonal upwelling, especially in temperate ecosystems. Some diatoms elevate their competitive fitness by producing polyunsaturated aldehydes (PUAs). These phytochemicals act to reduce the fecundity of their grazers by reducing sperm motility, lowering egg production and viability, and delaying embryo development, reducing diatom consumptive pressure. While research into the mechanisms driving PUA production includes bottom-up factors (i.e., nutrient availability), few studies have explored how dissolved carbon dioxide (pCO2) concentration affects PUA production. In this study, we analyzed the production of bioactive PUAs (2,4-heptadienal, 2,4-octadienal, and 2,4-decadienal) in two diatom species found in the Salish Sea, an inland sea of the North Pacific ecosystem, under varying pCO2 concentrations that are experienced during seasonal upwelling events. We found that elevated pCO2 concentration caused an increase in carbon uptake in the diatoms, but did not lead to more PUA production, and at times caused a decrease in production. Our results suggest that carbon enrichment does not elevate the chemically defensive capabilities of diatoms by way of elevated PUA production.more » « lessFree, publicly-accessible full text available July 10, 2026
An official website of the United States government
